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This paper is a theoretical and experimental investigation of the onset of the buoyancy- 
driven longitudinal roll cells that occur when a liquid layer flows over a heated hori- 
zontal plate. Linear stability theory is applied under the assumption that the spatially 
developing temperature profile can be treated locally, that is at  each axial position, as 
being ‘frozen’. Using the film thickness as the length scaling factor, the critical 
Rayleigh numbers associated with the onset of longitudinal rolls are found to be 
considerably lower than measured values. A modified local stability analysis using the 
thermal boundary-layer thickness as the scaling factor is shown to agree with experi- 
ments. Predicted wavenumbers and the position of the onset of cellular convection 
are in agreement with wavenumbers measured by flow-visualization techniques. The 
position of the onset of cellular convection is also obtained from heat-transfer measure- 
ments at  the heated surface. In the asymptotic limit of alinear undisturbed temperature 
profile the classical solutions of the Rayleigh-BBnard problem for the critical Rayleigh 
number and wavenumber are recovered, the only effect of the flow being the structure 
of the secondary flow that occurs when the system is unstable. Amplification theory 
is also compared with experimental data for the position at  which the thermal effects 
of the convection are detectable and for the wavenumbers measured by flow visuali- 
zation. The thermal amplification ratio and a velocity-disturbance amplification 
ratio W are used to interpret the onset of discernible cellular convection. The data are 
not consistent with any single amplification ratio over the range of Rayleigh numbers 
studied (lo3 < Ra < 3 x lo5), and the theoretical and experimental results suggest 
that a band of wavenumbers rather than a single wavenumber is encountered when 
cellular convection occurs. 

1. Introduction 
When a fluid is heated from below the vertical temperature gradient in the fluid 

leads to a potentially unstable density gradient. Convective motion, driven by the 
buoyancy of the hotter fluid near the heated surface, occurs when the density variation 
become sufficiently large to overcome the stabilizing effects of viscosity and thermal 
conduction. In the classical problem of heating an initially stagnant liquid layer, the 
Rayleigh-BBnard problem (RBP, for brevity), convective motion occurs when the 
Rayleigh number (Ra* = pgd3AT/av for constant-temperature boundary conditions 
and Ra = pgq,d*/akv for constant heat flux) exceeds a critical value Rac that depends 
on the thermal and hydrodynamic boundary conditions at  the upper and lower 
surfaces. The parameters in the Rayleigh numbers are: p, the coefficient of volumetric 
expansion; g, the gravitational acceleration; d, the liquid layer’s thickness; AT,  the 
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temperature difference across the layer; qw, the wall heat flux; a, the thermal diffu- 
sivity ; k, the thermal conductivity, and v,  the kinematic viscosity. 

Since Rayleigh (1916) analysed the onset of thermal convection apparently corres- 
ponding to BBnard's (1900) experiments an extensive literature has evolved around 
the RBP and related problems. Because Chandrasekhar's (1961) treatise covers the 
principles of hydrodynamic stability and Berg, Acrivos & Boudart (1 966) and 
Whitehead (1971) have reviewed the field of cellular convection, we need mention 
only the studies most germane to the present work. 

It should be pointed out that even with the classical RBP there are numerous 
complications that can arise. It is well established that surface-tension variations 
can also produce cellular convection (Marangoni instability), and some of BBnard's 
observations were of surface-tension-driven instabilities. Another complication emer- 
ges when the rate of heating is high, for in this event the undisturbed temperature 
field is nonlinear and time dependent, and the question of the time required to reach 
the onset of convective motion arises. 

Soberman (1959) and Nielsen & Sabersky (1973) reported experimental results 
showing that rapid heating apparently increases the Rayleigh number required to 
initiate thermal convection, and Morton (1  957) analysed the problem of time-dependent 
heating for the special case wherein the deviations from a linear density gradient are 
small by using conventional marginal-stability concepts. Lick (1  965) and Currie 
( 1  967) applied a quasi-steady approach in which the transient and nonlinear un- 
disturbed temperature profile was approximated by two linear segments. Foster 
(1965), Mahler, Schechter & Wissler (1968) and Gresho & Sani (1971) questioned 
quasi-steady analysis, claiming that the quasi-steady model is a poor one owing to 
the effect of the rapid variation of the undisturbed temperature profile on the onset 
of instabilities. Contrary to the concept of the marginal state, they suggested redefining 
the critical Rayleigh number as occurring when the motion is first discernible. Assum- 
ing some initial disturbance, typically ' white noise ', Foster, Mahler et al. and Gresho 
& Sani considered the critical state to be attained at the time when the fastest-growing 
disturbance has grown sufficiently to be observed, i.e. when the initial disturbance 
has been amplified by several orders of magnitude. But this definition lacks unique- 
ness since it involves the measurability of discernible motion, which in turn involves 
the measurement technique. 

As we shall show, the time-dependent RBP is closely related mathematically and 
conceptually to the present problem, which involves spatial growth of disturbances, 
but the convective motion that ensues above the critical Rayleigh number is quite 
different when the liquid layer is flowing. 

Although we shall examine the problem of convective instability brought about 
by an adverse temperature gradient, the problem of convective motion also arises 
when concentration gradients produce unstable density gradients. 

Plevan & Quinn ( 1  966) and Blair & Quinn (1969) studied experimentally the con- 
vective motion associated with unstable density gradients produced by unsteady- 
state gas absorption in an initially quiescent liquid layer, and the latter compared 
their results with Foster's (1968) amplification theory. The results are inconclusive 
since amplification ratios of from 103 to 108 were required for consistency with the 
data on the onset of cellular convection. Their amplification ratio @ is defined by 

W )  = [ (W2( t ,  z))/(w2(O, 2))1', 
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where w is the vertical component of the non-dimensional velocity perturbation and 
w(0, z )  is the assumed initial disturbance. The angular brackets indicate integration 
over the film thickness, i.e. 

(W2(t, 2)) = IO1 wyt ,  2) dz. 

If arnplific&iiion ratios as large as 1 O8 must be invoked to obtain agreement between 
theory and experiment, few conclusions can be drawn because linear stability theory 
is not likely to be valid when such a large amplification of disturbances has occurred. 

Lower amplification ratios were consistent with the experimental results of Daven- 
port & King ( 1 9 7 4 ~ )  b) ,  who studied the onset of natural convection in deep pools 
heated from below and at gas-liquid interfaces by cooling the upper surface of an air 
gap above a liquid pool. The onset of convection for a gas-liquid system was found 
to be very similar to that for a liquid-solid surface. On comparing their data on 
the Ba at which convection was first observed with Foster’s amplification theory, 
they found their results to be consistent with W = 10’ or lo2 at high Prandtl numbers 
(Pr = v/a > 100) and with W = lo2 or lo4 for Pr = 10. 

A study closely related to the present work is that of Tobias & Hickman (1966), 
who measured the effects of buoyancy forces on ionic mass transfer at  horizontal 
planar electrodes with laminar and turbulent flow between the parallel plates. They 
successfully correlated data for free-convection control and for stable laminar con- 
vective diffusion. They postulated the existence of roll cells as the secondary flow 
that occurs at higher Rayleigh numbers, and electrode deposits on their cathode 
provided evidence in the form of streaks that roll cells had occurred. 

Hung & Davis (1974a, b )  observed and measured the onset of similar roll cells in 
their study of heat transfer to the liquid layer of a horizontal stratified gas-liquid 
flow, and they showed that with combined free and forced convection the Nusselt 
number can be increased by more than 300 yo over the Nusselt number for pure forced 
convection. The boundaries of the roll cells were observed by flow visualization with 
a water-soluble dye, and the axial position of the onset of free convection was deter- 
mined by flow visualization and heat-transfer measurements. Hung & Davis (19744 
analysed this space-dependent analogue of the time-dependent RBP by means of 
linear stability analysis using the quasi-static (or ‘frozen ’ temperature profile) 
assumption of Morton (1957), Lick (1965) and Currie (1967). The predicted critical 
Rayleigh numbers were found to be significantly lower than experimental values. 

It is the purpose of the present work to extend both the theoretical analysis and the 
experimental work of Hung & Davis to elucidate the mechanism of roll-cell formation, 
to test the assumption of the quasi-static (or quasi-steady) temperature profile, and 
to predict the onset of cellular convection for liquid-film flow. In  addition, we analyse 
the stability problem by means of amplification theory, comparing the results of 
analysis with our experiments. 

2. The unperturbed system 
Consider the system examined by Hung & Davis ( 1 9 7 4 ~ )  and shown in figure 1. 

The only effect of the concurrent gas flow here is to produce motion of the liquid 
film, and when the axial pressure gradient is sufficiently small, which is true of the 



568 E .  J .  Davis and C. K .  C h i  

Developing 
temperature profile Gas flow 

.. . . . 
Heated plate 

FIGURE 1. The system under consideration. 

experiments to be considered, the liquid flow closely approximates Couette flow. There 
is no additional complication if the analysis is extended to Poiseuille flow between 
parallel plates, which is the system studied by Tobias & Hickman, but the details of 
the computations are somewhat different as we shall indicate. 

It should be pointed out that concurrent gas-liquid flows are potentially unstable 
with respect to long interfacial waves and short Tollmien-Schlichting waves as 
recently discussed by Gumerman & Homsy (1974a, b ) ,  but these instabilities do not 
occur under most of the conditions of interest here. At the higher gas and liquid flow 
rates of the experiments, however, interfacial waves were suppressed by using trace 
amounts of a soluble surfactant. 

For a sufficiently large aspect ratio (plate width to liquid-film thickness) the edge 
effects can be neglected and the non-dimensional unperturbed velocity and tempera- 
ture distributions are given by 

U(C) = -25 (1) 

and 

where the eigenfunctions $n(c) are given by 

The coefficients Kn are constructed to produce a uniform inlet temperature, i.e. 
@ ( O , [ )  = 0, and are given by 

where r(z) represents the gamma function and J,(z) is the Bessel function of order v. 
The non-dimensional co-ordinates are defined as f = xIdPe, 7 = yld and 5 = z /d ,  
where the Pdclet number is Pe = dii/a. The liquid-film thickness is d,  Z is the average 
velocity of the liquid film and a is the thermal diffusivity of the liquid. The non- 
dimensional velocity and temperature variables are defined by U = u*F, B = v*d/a, 
W = w*d/a and 0 = (5"-T,)/(p,d/k), where (u*,v*,w*) is the dimensional velocity 
vector, T is the dimensional temperature, To is the inlet temperature (which is also 
the interfacial temperature here), pw is the heat flux at the heated surface and k is 
the thermal conductivity of the liquid. 

Note that we are considering constant wall heat flux and uniform free-surface 
temperature boundary conditions. For these conditions the eigenvalues An are ob- 
tained as the zeros of the following transcendental equation: 

Kn = 3'/r(g) A $ J i ( t A n ) ,  (4) 

J-+(QA,) = 0, (6) 

which gives A, = 2.79952, A, = 7.48177, A, = 12.1863, .... The higher eigenvalues 
have been tabulated by Choi (1976). 



1 .o 

L n  

Cellular convection with liquid-film j b w  669 

0 0.5 1 .o 
Dimensionless temperature, 0 

FIUURE 2. The unperturbed temperature distributions. Solution: --, Graetz; - - -, Leveque. 

For Poiseuille flow between parallel plates the undisturbed temperature field is 
obtained in terms of confluent hypergeometric functions as shown by Davis (1973), 
but the general structure of the problem solution is the same, and any appropriate 
linear boundary conditions can be treated. 

The eigenfunction solution (Graetz solution) given by (2) is computationally 
inconvenient for small values of 5 because of the slow convergence of the series 
expansion, so for small 6 we have used the Leveque solution 

where w = l J ( g E ) S  and r (a ,  b )  is the incomplete gamma function. 
The temperature distributions predicted by (2) and (6) are shown in figure 2. The 

asymptotic limit of a linear temperature profile is seen to occur for > 1,  and the 
region 0 < 5 < 1 corresponds to the thermal entry region. The temperature distribu- 
tion in the thermal entry region is similar to the unsteady-state temperature distri- 
bution in a stagnant liquid layer, but under the steady-state conditions of the present 
problem an instability that develops does so spatially. Deviations from the undisturbed 
temperature distribution caused by natural convection are best determined experi- 
mentally by measuring the axially varying Nusselt number defined by N u  = M/k ,  
where the heat-transfer coefficient h is calculated from the definition h = qw/(Tm - Fw), 
in which qw is the local wall heat flux, T, is the mixing-cup temperature of the liquid 
film and Tw is the local wall temperature. 

From the definitions of the Nusselt number and the mixing-cup temperature, the 
Nusselt number Nuf  for pure forced convection, becomes 
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FIGURE 3. Schematic diagram of the experimental equipment. 

if the temperature distribution (2) is used and 

if (6) is used. 
Before proceeding to the analysis of the perturbed system it is instructive to examine 

the results of experiments to establish the heat-transfer characteristics of the com- 
bined free and forced convection. 

3. Heat-transfer experiments 
The experimental facility used to obtain heat-transfer data was essentially that 

used by Hung & Davis (19743) and described by Frisk & Davis (1972). Briefly, a 
water-wind tunnel, shown schematically in figure 3, was equipped for measuring the 
relevant fluid-mechanical and heat-transfer parameters. The apparatus consisted of 
a turbocompressor for supplying the air flow, a spray chamber in which the air was 
saturated to prevent evaporation of the liquid phase, a rectangular Plexiglas duct 
(2.5 cm high and 25 cm wide), a heat-transfer section consisting of an electrically 
heated copper block installed flush with the tunnel bottom and a recycling system 
for the liquid phase. Thermocouples inserted in the copper block were used to  measure 
the wall temperature profile, and the liquid-film thickness was measured by means 
of a micrometer probe and an electrical conductance probe. Interfacial velocities were 
measured by placing small particles on the liquid surface and recording the time 
required for them to move between two axial positions. The heat flux was measured 
and controlled by means of six banks of powerstats each of which supplied heat to a 
section of the copper block. To minimize axial conduction in the block the six sections 
were separated by 1 mm Teflon sheets. More complete information about the experi- 
mental equipment and procedure is given by Choi (1976). 

By varying the gas and liquid flow rates and the power to the heating elements a 
wide range of Rayleigh numbers could be studied. Local Nusselt numbers were cal- 
culated from the heat flux, wall temperature and mixing-cup temperatures (obtained 
by energy balance). Typical results are shown in figure 4 as Nusselt number v8. non- 
dimensional axial distance for various Rayleigh numbers. Because the mixing-cup 
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FIGURE 4. Experimental Nusselt numbers as a function of axial position for various Rayleigh 
numbers. The solid and dashed curves are the results predicted by (7)  and (8) for pure forced 
convection. 

temperature and the physical propertiesvaried in the axial direction theRayleighnum- 
ber varied, and the Rayleigh numbers indicated on the figure are based on the physical 
properties and temperatures at  the leading edge of the heat-transfer test section. 

Figure 4 shows that, within the limits of experimental error, the experimental 
Nusselt numbers agree with (7) and (8) near the leading edge of the heated section. 
At some axial distance that depends on the Rayleigh number, the Nusselt numbers 
increasingly deviate from the prediction for pure forced convection. When the heated 
plate is sufficiently long it is observed that the Nusselt number attains an asymptotic 
value larger than that for pure forced convection, and the asymptotic value increases 
with increased Rayleigh number. Although heat-transfer measurements show the 
effect of the instability, the mode of the instability has been examined by means of 
flow visualization. 

4. Flow-visualization experiments 
Preliminary studies using a potassium permanganate solution (see Hung & Davis 

1974 b )  showed evidence of roll cells initiating at  the axial positions corresponding to 
the minima in the Nusselt numbers discussed above. Better results have been obtained 
using a commercially available tracer: Rheoscopic Fluid A& 1000 (Kalliroscope Co., 
Cambridge, Massachusetts). A 0.6 % aqueous solution of the tracer was added to the 
water feed, and photographs were taken at  the heat-transfer test section from which 
the dimensions of the roll cells could be obtained. Figure 5 (plate 1) shows an overall 
view of the heat-transfer plate after the system had been operated for about six hours 
to permit deposition of some of the colloidal particles on the bottom of the tunnel. 
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FIGURE 6. Schematic diagram of the photographic set-up used to measure the wavelengths of 
the roll cells. 

Deposition occurred uniformly in the upstream region of the heated plate and along 
the lines marking the downward flow in the roll cells. The boundaries of the roll cells 
are clearly evident in the photograph, but the onset of convection is not sharply 
defined because of the exceptionally long operation of the system. During the six 
hours of deposition, voltage fluctuations and flow variations were sufficient to cause 
non-uniform deposition in the flow direction. 

To measure the roll-cell dimensions photographs were taken from directly above 
the heated plate with a light beam from a strobelight directed perpendicular to the 
axis of the camera. Figure 6 is a schematic diagram of the photographic arrangement. 
A light beam passing normal to the roll cells was reflected off colloidal particles that 
were aligned with the streamlines of the flow. The result, seen from above, is a series 
of light and dark bands, each pair of which corresponds to a single roll cell. If the 
light source is moved to the right-hand side of figure 6, the light and dark bands re- 
verse as shown by Choi (1976) in a thesis. By counting the number of pairs of such 
bands over a given width of test section the average wavelength of the roll cells may 
readily be determined from photographs. The wavenumber is given by 

a = Znd/A, 

where A is the measured wavelength and d is the film thickness. Figure 6 (plate 2) 
shows typical roll cells at  two different axial positions along the heated surface. At 
the lower Rayleigh number (Ra = 2.2 x lo6) a cellular secondary flow occurs, but for 
Ra = 2.7 x los transverse perturbations appear to produce a second instability 
leading to a turbulent film. 
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5. The perturbation equations 
We have analysed the onset of the cellular motion described above by means of 

linear stability theory. As the formulation of the governing equations is conventional, 
we shall merely sketch the assumptions and list the resulting equations. It is clear 
from the nature of the problem that the growth of disturbances is spatially dependent 
and time independent, so we can eliminate time derivatives. Since the PBclet number 
(Pe = dii/a) is large here we can neglect axial conduction. Applying the Boussinesq 
approximation for the density and denoting unperturbed quantities by a capital letter 
and perturbations by a lower case letter, the linearized governing equations become 

V . u = 0 (continuity), (9) 

(U  $ + w g) = - V,p + Vgu + Ra Bk (equation of motion), (10) 

ae 
U -  + u- + w - 0 = Vg 8 (energy equation), 

% i aag sag) 
where U is given by ( l ) ,  V, is the two-dimensional operator j a/aq + k a/at; and the 
perturbation velocity vector is u = iu+jv+kw,  where u, v and w are the non- 
dimensional velocity perturbations in the x, y and z directions respectively. The Prandtl 
and Rayleigh numbers are Pr = v/a and Ra = /3gqWd4/akv respectively, and the non- 
dimensional pressure perturbation is given byp  = p,*d2/pa, wherep* is the dimensional 
pressure. 

The boundary conditions are 

u = v = w = aslay = o at  5 = 0. (12) 

At the upper (free) boundary we assume that there are no perturbations in the tan- 
gential stresses and no surface deformation. Also, considering the gas-liquid interface 
to be isothermal owing to heat transfer to the isothermal turbulent gas phase, the 
interfacial boundary conditions become 

aulaf: = a q a y  = w = 8 = o at y = 1 .  (13) 

The remaining boundary conditions are generated from the equation of continuity 
using conditions (12) and (13): 

aw/ay = 0 a t  y = 0, (14) 

a2w/ay2 = 0 at [ = 1.  (15) 

We shall make one additional simplification based on the results of Hung & Davis 
( 1  974 a) : we shall examine the limiting case of large PrandtI number (Pr + 00). Hung 
& Davis showed that the effect of lowering the Prandtl number is to lower the pre- 
dicted critical Rayleigh number for the onset of free convection. 

Up to this point our analysis parallels that of Hung & Davis, but our solution pro- 
cedure differs. Although our results will be identical to those of Hung & Davis when 
we treat the problem as formulated above, the new method of solution provides the 
basis for improving the analysis by rescaling to incorporate the thermal boundary- 
layer thickness. 

For large Pr, (10) simplifies to 

Vgu + Ra8k = V2p. (16) 
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Since u vanishes at the boundaries and au/a< is assumed to vanish a t  the free surface, 
only the trivial solution, u = 0,  satisfies the system of equations. That is, for large Pr 
and large Pe thermal disturbances do not affect the axial velocity. This result is not 
inconsistent with our expectations that the most preferred mode of disturbance 
marking the onset of thermal convection will be a regular longitudinal roll with the 
secondary flow described by perturbation velocity components v and w. 

Because of the very large aspect ratio associated with the liquid layer (25 cm wide 
by - 5 mm thick) in this study we can look for a solution in terms of the transverse 
wavenumber a as follows. Assume that the disturbances have the form 

(17) 

(18) 

and [2c8/a[-(D2-a2)]8+2D@ = 0 (19) 

& ( c , O )  = a([, I )  = D$([,O) = D2S(<, 1 )  = 0 (20) 

(v, w, 8 , p )  = @,&, 13, @) eiar. 

Using these relationships and eliminating @ and 0 from the governing equations, we 
obtain 

(D2-a2)2&-Raa26' = 0 
A 

with the boundary conditions 

and 8([, 1 )  = D8([, 0) = 0, (21) 
where D = a/ag. 

The essential differences between this set of equations and the classical Rayleigh- 
BQnard problem are the fact that the undisturbed temperature 0 is a function of both 
6 and < and the presence of the axial convection term 2[a8/a[ in (19). Both of these 
additions complicate the problem somewhat. This problem is closely related to the 
unsteady-state RBPas is made clear by examination of (1  9). If the velocity distribution 
were taken to be uniform (slug flow) the convective term in the equation would become 
Uoa8/a[, where V, is the constant uniform velocity. In this case, by setting T = [/G 
we obtain the unsteady-state heating problem of Foster and Gresho & Sani. The un- 
disturbed temperature distribution 0 in this case would also reduce to theirs. Thus 
we can anticipate that the essential features of the unsteady-state Rayleigh-BQnard 
stability problem will carry over to our spatially dependent problem. 

We shall examine the stability characteristics of (18)-(21) from two points of view 
in this paper. First we shall consider the stability under the assumption that at  each 
axial plane [ = t1, t2, . . . , we can consider the instability as arising owing to the local 
temperature distribution without considering the axial rate of change of temperature. 
This approximation is equivalent to the quasi-static assumption used by Morton 
(1957), Lick (1965) and Currie (1967) for the unsteady-state RBP and is subject to  
the criticism raised by Foster (1965) and Gresho & Sani (1971). In a subsequent section 
we re-examine the problem, relaxing this assumption. 

6. The Galerkin solution 
The problem as stated above involves the question of how the temperature field 

evolves from that of a developing thermal boundary layer that is axially dependent 
to a stable secondary flow (roll cells) that is largely independent of axial position 
(except for the fact that with a constant-heat-flux system Ra changes somewhat in 
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the axial direction). We cannot simply look for disturbances proportional to e‘E, so 
we shall use a Galerkin scheme to approximate the solution. 

The trial functions are chosen to be the space-dependent Fourier series 

where 

m 

and the eigenvalues yi satisfy 

which gives y1 = 3.92660, y2 = 7.06858, y3 = 10.2101, .... Similarly 

cothyi- cotyi = 0, 

~ ( t ,  6) = Z cj(t) Dj(c), 
j= 1 

where Dj(Q = C O s B j  Y, Bj = ( j -  4) 7r. (26) 

These expressions have been chosen for the orthogonality properties of the eigen- 
functions, and they satisfy the boundary conditions. Substituting these trial functions 
in (1  8) and (1  9) we obtain 

and 

where a prime indicates differentiation with respect to 6. 
Multiplying (27) by B,(g) and (28) by Dj(C) and integrating over y from 0 to 1 ,  

we obtain an infinite set of first-order differential equations in [. By truncating each 
series after a finite number of terms, the resulting equations can be written in the 
matrix form (H - L) A([) - RU MC([) = O (29) 

and P dC(t)/dt- QCG) - R ( t )  A([) = 0, (30) 

where the matrices H, L, M, P, Q and R have the following elements: 

y; + a4 8fi, Qij = -’XcYij, a2 Hij = - 
2a2 2 (“:“ ( Yi y j  ) for i i j ,  
yt-y; tanhy, tanhyj 

tanh2 yj 

L . . = ( B . ( B ; ) =  23 3 

(tanhYj-Yj) for i = j, 
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FIGURE 8. The neutral-stability curve for the asymptotic limit of a linear undisturbed 
temperature profile. 

Here the operation (f I g )  is defined by 

cfl s) = /'f(5)s(C)dC. 0 

The matrices H, L, M, P, Q and R are N x N square matrices, where A([) and C ( f )  
are column vectors with N elements. These matrix equations can be combined to give 

(31) 

The stability characteristics of (31) must be determined to obtain the critical Rayleigh 
number Rae and the wavenumber a, corresponding to Ra,. To illustrate the solution 
procedure it is useful to consider first the asymptotic limit 5-t CQ, which corresponds 
to a linear unperturbed temperature distribution. 

dC([) /df  = P-l[Q + Ra R ( f )  (H - L)-' MI C(f ) .  

7. The asymptotic limit of large 5 
For large g the elements of R ( f )  reduce to 

R i j ( f )  = 2Mii = 2M5, 

where MT is the transpose of M. Furthermore, 8 becomes independent of f ,  so C&) 
can be replaced by a constant and thus dC/df = 0. In  this case (31) reduces to 

IQ+2RaMT(H-L)-lMI = 0. (32) 

Equation (32) has been applied to obtain the neutral-stability curve on a plot of Ra 
us. a, assuming the validity of the principle of exchange of stabilities. The results are 
shown in figure 8. The minimum in the neutral-stability curve for this asymptotic 
limit has been calculated to be 

Rae,, = 816.748 at a,,a = 2.21. 

This result is identical to the critical stability criterion for the RBP for constant heat 
flux at the fixed boundary and constant temperature at the free surface. Thus the 
flow has no effect on the onset of the instability in the asymptotic region. Furthermore, 
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the agreement between the critical Rayleigh number calculated here and the result 
reported by Sparrow, Goldstein & Jonsson (1964) (Ra, = 816.748 and a, = 2-21)  is a 
test of the accuracy of the Galerkin procedure applied in this study. 

To acquire insight into the nature of the instability in the limiting case for Ra > Ra,, , 
we have examined the spatial growth of disturbances. The unperturbed condition of a 
linear temperature profile which is independent of 6 makes it possible to look for a 
solution of the form 

[a(& C), &, 0 1  = [w*(C), S*(C)I e'c, (33) 

where cr is the spatial growth constant. Using this form of the solution and setting 
DO = - 1 (the asymptotic temperature gradient) in (19), (18) and (19) can be com- 

(34 
bined to give {[2u5- (D2 - a2)] (D2 - a2)2 - a2 Ra) w* = 0 

with boundary conditions 

w*(O) = Dw*(O) = w*(l) = D2w*(1) = 0 (36) 

and (D2-a2)2w*(i) = D(D2-a2)2w*(0) = 0. (36) 

This system of equations can be solved by applying the method of Sparrow et al. 
(1964), which uses a rapidly converging power series to obtain the maximum growth 
rate IT, and the corresponding wavenumber a, for Ra > Rac, @. 

Let 

and 

where b!!] = 0, bik) = for 0 < 1 < 5 and 

bik) = (Z!)-l{3a2(1- 2 ) !  bi!k + 2 4  - 6) (1 - 3)! bf!$ - 3a4(2 - 4)! bl!\ 

- 4cra2(I - 6) ( I  - 5)! b/&k + a2(Z - 6)! [(a4- Ra) b!?', + 2aa2b,'!',]} for 1 2 6. 

The coefficients Hk are chosen to satisfy the boundary conditions. From the boundary 
conditions at  6 = 0 we obtain H, = HI = 0 and H5 = &u2H3, and the conditions at  
[ = 1 generate the following secular equation: 

where the primes denote differentiation with respect to 5. For a particular a, the 
minimum Ra that satisfies (39) is obtained by means of a plot of Ra us. a. In this way 
we calculated the results shown in figure 9, which shows that the maximum growth 
rate and the critical wavenumber increase almost linearly with Ra for Ra > Ra,,,. 
The critical values Ra,, , and a ,  , for u = 0 obtained in this way are identical to those 
calculated from the Galerkin scheme. 

We conclude from these asymptotic results that for Ra > Ra,,, disturbances grow 
exponentially in space, which is the usual result of linear stability theory. Of course, 
after some sufficiently Iarge distance the disturbances will be too large to permit the 
neglect of nonlinear terms, and the analysis will be invalid. 
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FIGURE 9. The maximum growth rate and critical wavenumber as a function of Rayleigh number 
in the asymptotic limit of a linear undisturbed temperature profile. 

8. Local stability analysis for the thermal entry region 
If it is assumed that the onset of thermal convection is controlled by the local 

temperature distribution just upstream of the onset, i.e. that the rate of change of 
the temperature profile in the axial direction can be neglected, (31) simplifies to the 

The determination of Ra, and a, follows the procedure discussed above for the 
asymptotic analysis, but in this case Ra, is a function of f because of the developing 
temperature profile. For any particular axial position a neutral-stability curve is 
generated and the minimum Ra on that curve is considered to be the critical Rayleigh 
number above which thermal convection initiates at that position. Figure 10 shows 
a composite of such neutral-stability curves for various axial positions up to the 
asymptotic limit, which occurs at f > 1.0. 

The critical Rayleigh number is seen to decrease as f increases, while a, varies only 
slightly with E. The relatively flat shape of the neutral-stability curves in the vicinity 
of a, suggests that a fairly wide range of disturbance frequencies will lead to thermal 
convection for Ra only slightly above Ra,. It is not surprising that Ra, decreases 
sharply as f increases, for at  small values of f the thermal boundary layer is thin, and 
only within this boundary layer do density variations occur. These results can be 
compared with the experimental heat-transfer data of figure 4 by plotting Ra v8. the 
axial position of the minimum Nu for each set of heat-transfer data. The results of 
this analysis and experiment are shown in figure 11 together with the results of Hung & 
Davis (19744,  who used a Runge-Kutta method to solve the governing equations for 
a local stability analysis. 

secular equation IQ+RaR(f)(H-L)- lMI = 0. (40) 
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FIUURE 10. Neutral-stability curves for various axial positions based on local stability analysis. 

It is clear from figure 11 that the local stability theory predicts Rayleigh numbers at  
the onset of thermal convection considerably lower than the experimental obser- 
vations for small 6,  but the reason for this disagreement is not clear. The data for 
larger values of 6 lie closer to the theoretical curve than those for small 6,  which 
suggests that the asymptotic results agree, but there are three possible explanations 
for the disagreement at small 6. 

(i) The disturbances detected experimentally do not correspond to the predictions 
of linear stability theory because the disturbances must grow sufficiently to be 
detected. 

(ii) The neglect of the axial variation of the temperature profile is not valid. 
(iii) The use of the film thickness d as the scaling factor does not adequately take 

into account the fact that the thermal convection is largely confined to the thermal 
boundary layer. 

We shall examine point (i) in some detail in the section on amplification theory. 
Points (ii) and (iii) will be examined simultaneously below, and it will be concluded 
that a modified local stability theory adequately describes the experimental data. 

9. The modified iocal stability analysis 
There is some experimental indication that at  the onset of thermal convection the 

disturbances are confined to a thin region near the heated surface. Although the 
velocity disturbances are controlled mainly by the boundary conditions at the fixed 
and free surfaces, it  seems reasonable to assume that the temperature disturbances are 
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FIGURE 11. A comparison between theory and experiment for the onset of cellular convection. 
0, water data; - -, Runge-Kutta method. 

confined to the thermal boundary layer produced by the forced convection. We shall 
reformulate the problem using this premise togenerate a modified local stability theory. 

Equations (18) and (19) still apply and the hydrodynamic boundary conditions 
(20) remain the same, but the thermal boundary condition at  y = 1 will be replaced 

by &,I!J = 0 for A < 5 < 1, 

where A is the non-dimensional thermal boundary-layer thickness derived from the 
undisturbed temperature field. There is some arbitrariness at  this point, for we must 
define A quantitatively. It is conventional in boundary-layer theory to define A as 
the distance from the heated surface at which the temperature difference Tw - T is 
99 % of T,- T,, where T, and T, are the wall temperature and bulk temperature, 
respectively. In  our application T, can be taken to be the constant surface temperature. 
We shall use this definition for A, and to examine the effects of various possible de- 
finitions of A we shall also use a 99.99% criterion. These two policies can be used 
together with the Leveque solution for the unperturbed temperature to give 

Al = (10.4E)f for E Q 0.096, 

As = (28E)f for k < 0.036. 
The previous analysis is equivalent to A = 1.  

Now, using trial functions only slightly modified from (22) and (25), the resulting 
governing equations are solved by the method discussed in the previous sections to 
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obtain the additional curves marking the onset of natural convection shown in figure 
11.  The prediction based on A, is in surprisingly good agreement with experiments 
over the whole range of Rayleigh numbers studied. Both the slope of the theoretical 
curve of Ra, us. (, and the absolute values are consistent with the experimental data, 
whereas both the slope and the values predicted by the original local stability analysis 
disagree with the experiments. 

Although some data points lie below the theoretical prediction, it should be pointed 
out that our calculations were for large Pr while the experiments were performed 
with water, for which Pr N 7. As shown by Hung & Davis (1974a), the effect of a 
lower Pr on the analysis is to lower the predicted values of Ra, somewhat. One would 
normally expect most of the data points to lie above the predictions from linear 
stability theory because of the finite distance required for instabilities to grow to a 
discernible size as mentioned above. 

The results of the modified local stability analysis for the onset of cellular convection 
suggest that the instability develops within the thermal boundary layer and that the 
concept of local stability, which neglects the axial rates of change of the temperature 
profile, has some validity. But there remains one additional set of information to be 
examined: the wavenumber of the roll cells. 

10. Wavenumbers 
Figure 10 indicates that the critical wavenumbers corresponding to the onset of 

the cellular mode of instability are predicted to be nearly constant over a wide range 
of Ra, by the original local stability theory. Numerous photographs were taken of the 
flow-visualization experiments to determine the widths of the roll cells (see figure 7, 
plate 2). The photographs show that the roll cells broaden somewhat with increasing 
axial distance and that some pinching of the roll cells occurs a t  larger distances, 
causing disturbances to the roll cells. However, near the onset of roll-cell formation 
usually 20 or more roll-cell boundaries could be distinguished across the tunnel bottom 
and an average roll-cell width could be measured from the photographs. Results of 
those measurements are plotted in figure 12 as a, US. Ra,. Also plotted on the figure 
are the predictions obtained using the local stability analyses. The local stability 
analysis with the film thickness as the length scale completely fails to predict the 
proper dependence of a, on Ra,, while the modified local stability analysis predicts 
wavenumbers that are in reasonable agreement with the observed values but increase 
with Ra, at a smaller rate. 

A factor possibly contributing to the difference between theory and experiment 
is that the analysis was limited to infinitely large Prandtl number, while the data are 
for Pr N 7. Although the Prltndtl number has some effect on the critical wavenumber, 
as shown by Hung (1973), the differences are not likely to be due to this effect. Recent 
data taken in this laboratory for a glycerol-water solution (Pr N 200) show wave- 
numbers close to those for water. 

11. Amplification theory 
In  the local stability analysis performed above we neglected the derivative dC/@ 

in (31) and solved the resulting secular equation to obtain the stability criterion for 
cellular convection. If we cease to neglect the axial rate of change of the temperature 
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FIGURE 12. A comparison between theory and experiment for the wavenumbers of the cellular 
convection. 0, water data. 

profile, we require inlet conditions to solve (31). This is a major difficulty associated 
with amplification theory, for in most experiments we have no control over and no 
knowledge of the inlet disturbances. One conventional approach is to consider the 
inlet disturbance to be ‘white noise’, i.e. to assume that disturbances of all wave- 
numbers exist and have the same amplitude. Moreover, we shall arbitrarily choose 
either A,(O) = 1 or Cj(0) = 1 to define the inlet disturbance. In his analysis of the 
stability of a deep liquid pool cooled from above, Foster (1 965) examined the effects 
of various initial conditions including ‘white noise ’ with all the Fourier coefficients 
equal, finding that the latter policy led to the fastest growth rates. Mahler et al. (1968) 
concurred with Foster on this point, but Gresho & Sani (1971) pointed out that this 
policy of choosing the Fourier coefficients to be equal can lead to the prediction of 
unreasonable temperature perturbations. We shall examine this point in some detail 
below. 

Since the solution of (31) subject to the prescribed inlet condition is obtained to 
within a multiplicative constant, we shall apply the usual criterion for measuring the 
magnitude of the perturbations: the amplification ratio 

This amplification ratio is the one used by Foster (1965) and all subsequent investiga- 
tors and is appropriate when it is the velocity perturbations that are observed and 
used as the criterion for the onset of the instability. In the experiments associated 
with this work both flow visualization and heat-transfer measurements were used to 
identify the onset of discernible perturbations. To interpret the heat-transfer measure- 
ments it is more appropriate to define a Nusselt number amplification ratio = a8 
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FIUURE 13. The effect of the number of simultaneous equations used on the thermal amplifica- 
tion ratio Nu. Ra = 5 x  lo4, a = 3.6, --, N = 15, ---, N = 14; -.-, hT = 13; ---, 
N = 12. 

- 

where the amplitude perturbation of the bulk temperature @,,(<) is given by 

Figure 4 indicates how the heat-transfer measurements were used to define the 
onset of discernible buoyancy-driven convection. In the upstream region of the 
heated section the Nusselt numbers follow the predictions of the Graetz solution for 
pure forced convection. At an axial position that depends on the Rayleigh number the 
measured Nusselt number passes through a minimum and begins to deviate from the 
Graetz solution. We define the axial position of this minimum to be the point gC at 
which the convective perturbations are large enough to be discernible. We shall 
apply both @(<) and %(<) to interpret experimental results. 

To solve the system of equations summarized by (31) we used the fourth-order 
Runge-Kutta-Gill method. The step size was selected such that the single-step error 
was less than 0.1% in a predictor-corrector integration method. For the results 
presented below we truncated the system to 15 equations after examining the effect 
of the number of equations N on the calculated amplification ratios. Typical results 
showing the effect of N on the calculated amplification ratio Nu are presented in 
figure 13. 
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FIGURE 14. The effect of wavenumber on the velocity amplification ratio Ti? for a ‘white noise’ 

velocity disturbance inlet condition (WNV). Ra = 5 x lo4, N = 12. 

12. Results of amplification theory 
Equation (31) involves the parameters a and Ra, so numerical calculations were 

carried out for several values of Ra with a varied to obtain the wavenumber with the 
largest growth rate. Typical results are shown in figure 14 as W us. E using a ‘white 
noise’ velocity disturbance as the inlet condition. For this case (Ra = 5 x  lo4) the 
largest growth rate was found for a = 3.6. The wavenumber amax of the disturbance 
with the largest growth rate is not sharply defined, and figure 14 shows that the 
slopes of the curves for a = 3.6 and a = 5-5 are not greatly different for sufficiently 
large 6 .  We shall discuss this behaviour in more detail below. 

The effect of Ra on amax and on the amplification ratio ut is shown in figure 16. 
The cusps that occur for Ra < 3.5 x 105 do not seem to be physically realistic and are 
probably the result of the rather artificial and arbitrary inlet value of @ ( O ,  6 )  imposed. 
For Ra > 3.5 x 105 the curves increase monotonically. Also shown in figure 16 is the 
solution corresponding to Rac, and a ,  m, the critical conditions obtained for the 
asymptotic limit using marginal-stability concepts. The curve can be expected to 
reach a constant asymptotic value beyond 6 = 0.1 since no growth or decay of dis- 
turbances should occur for these critical conditions in the asymptotic limit of large 6. 
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FIQURE 15. The effects of Rayleigh number on the wavenumber a, of the fastest-growing 
disturbance and on the amplification ratio 9. 

The effect of the inlet conditions on the solution has been considered by using a 
‘white noise’ inlet temperature disturbance (to be referred to as WNT) rather than 
the ‘white noise’ velocity disturbance (WNV), i.e. by choosing Cj(0) = 1 in (26) 
rather than A,(O) = 1 in (22). For Ra = 5 x 1 0 4  we obtained amax = 3.87, which is not 
significantly different from the result obtained using WNV. The solution for W is, 
however, significantly different as shown in figure 16 for three different values of Ra. 
The solutions obtained using WNT do not show the cusp encountered using WNV, 
which suggests further that the cusps are a result of an incompatibility between the 
inlet condition and the behaviour of the governing equations. 

A similar conclusion can be drawn by examining %(g) rather than G(E). For WNT 
the solution is well behaved as seen in figure 17, but for WNV cusps occur at the lower 
Rayleigh numbers. The values of amax obtained for WNT are generally slightly larger 
than for WNV, but the differences are not very significant considering the fact that 
the growth rates are not very sensitive to a in the vicinity of amax. 

A convenient method of indicating the effect of Ra on 4 and 8 is to examine the 
normalized functions w* = 4(6, 6)/@max(() and 8* = &((, 6)/&max([) a t  axial positions 
where the amplification ratio Nu has some specified value. Here amax and omax are 
the maxima of the functions @ and 8 respectively, considered as functions of vertical 
position g. Figure 18 shows w* and 8* for various values of Ra evaluated where 
Nu = lo3. The normalized disturbance velocity a.mplitude w* is nearly independent 
of Ra, and is nearly parabolic. The normalized disturbance temperature amplitude 8* 
shows a distinctive boundary-layer character with the boundary-layer thickness 

- 
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FIGTJRE 16. The velocity amplification ratio U, for 'white noise' temperature (WNT) and velocity 
(WNV) disturbance inlet conditions. -, WNV; - - -, WNT. 

decreasing with increasing Ra at the axial positions where = lo3. We should point 
out that this axial position is much greater for smaller Ra than for Iarge Ra because 
an amplification of lo3 will require greater distances as Ra decreases. Thus, from 
figure 18 we conclude that the primary effect of Ra on 0 is to alter its magnitude but 
not its functional dependence on 5. 

13. Comparison with experiments 
The results shown in figures 15 and 16 can be compared with experimental data on 

the onset of discernible natural convection by plotting the loci of points Ra vs. E 
corresponding to fixed values of the amplification ratios W and Nu. Figure 19 is a 
comparison of such loci with our experimental data. Also plotted on the figure are the 
results of marginal-stability analysis using the 'frozen ' or quasi-steady model for the 
undisturbed temperature profile. The experimental points are based on the heat- 
transfer measurements discussed above. 

The curves for NU= lo3 and lo4 are very nearly parallel to, but lie above, the 
curve based on the quasi-steady model. The axial distance between these solutions is 
the distance required for infinitesimal disturbances to amplify by the specified amount. 
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FIGURE 17.  The thermal amplification ratio for a 'white noise' temperature disturbance 
inlet condition ( WNT) . 

The curves for W = lo3, 104 and 106 show more upward curvature a t  larger Ra than the 
curves of constant %, but for lower Ra the curves have essentially the same slopes. 

It is clear from figure 19 that the onset of measurable cellular convection indicated 
by the experimental points does not correspond to any single amplification ratio. 
For Ra = 0(104) the data are consistent with Nu = lo3, but a t  higher Ra larger 
amplification ratios must be postulated to explain the data. These results are similar 
to those of Davenport & King ( 1 9 7 4 ~ )  for the temporal growth of disturbances in 
initially quiescent liquid pools. Their data for organic liquids are consistent with 
amplification ratios in the range 101 < W < 104 for Rayleigh numbers in the range 
300 < Ra < 3000 and Prandtl numbers in the range 7 < Pr < lo4. 

It must be pointed out that Pr 'v 7 in our experiments while we have limited our 
analysis to the asymptotic limit of large Pr. Foster (1965), Mahler et al. (1968) and 
Gresho & Sani (1971) have all examined the effect of Prandtl number on the growth 
rates for the time-dependent problem. Their results indicate that for a particular Ra 
the time required to reach a specified amplification ratio W increases with decreasing 
Prandtl number for 1 < Pr < 100. For Pr > 100 the results for infinite Prandtl 
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FIGURE 19. Comparison of the axial positions of the measured onset of discernible thermal 
disturbances with the predictions of amplification theory. 0, water data; - - - - , WNT, 
NU = 104; ---, WNT, NU = 106; -..-, WNV, iz = log; -.-, WNV, iz = 104; ---, 
WNV. iz = 103. 
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number apply. The calculations of Foster (1965) for Ra = lo6 and Gresho & Sani 
(1971) for Ra = 105 show that the critical time required to attain a specific amplitude 
ratio with Pr = 7 is increased by 40-70% over the critical time with Pr > 100. 

By analogy, then, we can expect the distance required to reach a specified value of 
either or W to be somewhat greater for Pr = 7 than for infinitely large Pr. The 
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FIGURE 20. Comparison of measured average wavenumbers with the predictions from amplifica- 
tion theory. 0, water data, - - -, theory for WNT; - - -, theory for WNV. 

effect on the solutions shown in figure 19 would be to shift the curves for cohstant 
Nuand U, to the right, but a factor of two would be insufficient to affect our conclusions. 
Recent data for a glycerol-water solution with Pr = 200 do not show a significant 
Prandtl number effect on the position of the onset of cellular convection. 

Because experimental observations do not conform to any single amplification ratio 
over a range of Rayleigh numbers, the utility of amplification theory for predicting 
the onset of cellular convection is questionable, but it is clearly an improvement over 
quasi-steady marginal-stability analysis. Although the results of amplification theory 
lack uniqueness (in the sense that a definitive statement about the onset of discernible 
disturbances cannot be made without recourse to experiments), we can evaluate 
amplification theory by examining predicted and experimental wavenumbers. From 
our flow-visualization experiments, such as that shown in figure 7, we observe that the 
roll cells formed are not perfectly uniform in width across the heated surface even if 
we neglect the effects of the side walls on the first few roll cells near the walls. But we 
can obtain a meaningful average wavenumber by measuring the dimensions of twenty 
or thirty roll cells in the central portion of the test section for runs at  various Rayleigh 
numbers. Figure 20 shows such experimental wavenumbers as a function of Rayleigh 
number and also the theoretical results for amax obtained from amplification theory. 
Since the wavenumbers of the fastest-growing disturbances differed slightly for the 
'white noise' inlet temperature disturbance and the 'white noise ' inlet velocity 
disturbance, we have plotted both results, indicated by WNT and WNV respectively. 

The experimental wavenumbers are generally lower than the theoretical values 
and increase with Ra at a greater rate than theory suggests. A possible explanation 
can be found by examining the effect of the wavenumber on the growth rate in the 



590 E .  J .  Davis and C .  K .  Choi 

t R a =  lo6 

t- i 

u t 
Ra= 105 

0 Band width 

R a = S x  lo4 1 

10’ 
2 3 4 5 6 7 

FIGURE 21. The growth rate G for various wavenumbera and Rayleigh numbers in the vicinity 
of the fastest-growing wavenumber. N u  = 1 0 4  for WNT. 

Wavenumber. a 

- 

vicinity of amax. For purposes of comparison let us define the growth rate of temperature 
disturbances by G = dNu/dfl. Figure 19 indicates that disturbances that have ampli- 
fied by Nu = 104 are discernible, so we shall examine growth rates for Nu = lo4 as a 
function of wavenumber and Rayleigh number. Figure 21 is a plot of Q us. a and shows 
that the growth rate is not very sensitive to the disturbance wavenumber in the 
neighbourhood of amax, especially at larger Rayleigh numbers. Thus it is difficult to 
establish amax with high precision. Furthermore, these results suggest that at any 
particular Rayleigh number there is a band of wavenumbers that have growth rates 
near the maximum growth rate, and the width of the band increases with increasing 
Rayleigh number. Spangenberg & Rowland (1961) and Berg, Boudart & Acrivos 
(1 966) have suggested that this characteristic of amplification theory explains why 
chaotic motion rather than a well-defined cell structure is frequently observed in 
BBnard’s (1900) experiment. 

In  the present problem of a flowing liquid film the cellular convection is fairly 
regular, but variations in both roll-cell width and the position of the onset of discer- 
nible disturbances are observed and suggest that a sharply defined wavenumber does 
not occur experimentally. To show that wave amplitude theory can be used to explain 
the variations we have plotted on figure 21 the range of wavenumbers having growth 
rates within 10% of the maximum growth rate. There is a distinct shift towards 
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higher wavenumbers when we consider such bands. Thus if a range of wavenumbers 
is observed experimentally there is a tendency for the average to be greater than amax. 
This tendency together with the effect of Prandtl number on amax can explain the 
differences between theory and experiment shown in figure 20. 

14. Conclusions 
The onset of cellular convection in a flowing liquid layer has been analysed by 

applying local stability analysis and amplification theory for the spatial growth of 
disturbances. The local (marginal) stability analysis using the liquid depth as the 
length scaling factor greatly underpredicts the critical Rayleigh number for the 
onset of cellular convection, and it predicts critical wavenumbers that are nearly 
independent of the Rayleigh number. 

Thermal amplification ratios NU of order lo3 and larger are required to obtain 
agreement with experimental data on the dependence on the Rayleigh number of the 
critical axial position for discernible cellular convection. Velocity amplification ratios 
;iij larger than 104 must be postulated to explain the data. The experimental data are 
in considerably better agreement with a modified marginal-stability analysis than 
with amplification theory. Classical marginal-stability analysis fails to predict satis- 
factorily either the position of the onset of discernible cellular convection or the 
dependence of the wavenumber on the Rayleigh number. 

The two analyses, amplification theory and the modified stability analysis, predict 
wavenumbers (for Pr -f 00) in fair agreement with those observed experimentally 
(for Pr N 7) ,  and amplification theory predicts a flattening of the wavenumber us. 
Rayleigh number curve at high Rayleigh numbers that is not seen experimentally. 
The modified marginal-stability analysis, which assumes that cellular convection is 
confined to the thermal boundary layer, predicts that amax increases with Rayleigh 
number at a greater rate than does amplification theory, and the best agreement with 
experiment is obtained by means of the modified local stability analysis. 

All of the theoretical approaches predict a flattening of the growth rate va. wave- 
number curve as the Rayleigh number increases, i.e. that the growth rate becomes less 
sensitive to wavenumber as the Rayleigh number increases. Hence, if a band of wave- 
numbers have growth rates not differing greatly from the maximum growth rate, of 
the wavenumber urnax, it is likely that all of these will become discernible at  approxi- 
mately the same axial position. The experiments confirm this speculation, for flow- 
visualization experiments show a rather jagged onset of observable roll cells and 
variations in the roll-cell width. 

It should be pointed out that the cellular convection analysed here undergoes a 
second instability at  Ra > 106. Our experiments (see figure 7)  show that transverse 
motion of the roll cells begins at  higher Rayleigh numbers, and the flow becomes 
turbulent. Although we have made numerous observations of the second instability, 
we have not studied the phenomenon systematically to determine its characteristics 
and effects on heat transfer. 

This work was supported by National Science Foundation Grant GK 41270 and the 
Design Institute for Multiphase Processing (DIMP) of the American Institute of 
Chemical Engineers. 
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FIGCJIW 5. A view of the heat-transfer section showing deposition of colloidal particles caused by 
longitudinal roll cells. 
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FIGURE 7 .  Plow visualization of the longitudinal roll cells in the upstream and downstream 
portions of the heat-transfer test section. 


